Abstract

For plasmonic alloy nanoparticles, theoretical modeling and experimental characterization are both central to our capabilities involving predictable synthesis and targeted applications. This article uses composition-tunable colloidal Au−Cu nanoparticles as a model system for exploring the issue of reliable experimental determination of composition in plasmonic alloy nanoparticles and correlation of this experimental data with theoretical predictions. Highly uniform spherical Au1-xCux alloy nanoparticles were synthesized with compositions ranging from x = 0 to 0.5. The particle compositions were analyzed independently using both powder X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS), which represent two of the most common nanoparticle composition analysis techniques. The plasmon resonance frequencies, determined experimentally for each sample using UV−vis spectroscopy, red shift with increasing copper content as expected. These experimentally determined plasmon resonance frequencies ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.