Abstract

Tuning the size of Au nanoparticles is always an interesting task when constructing Au/semiconductor heterojunctions for surface plasmon resonance-enhanced photocatalysis. In particular, the size of Au nanoparticles in the newly emerging “plasmonic aerogel” photocatalyst concept could approach the size of the semiconductor phase. This work provides an alternative route to realize the size tuning of Au nanoparticles in Au-CeO2 composite aerogels to some extent, within the framework of the well-established epoxide addition sol–gel method. The size tuning is achieved by exploiting the multi-functionalities of a mixed organic acid additive containing a thiol group in the gelation step. The obtained aerogel photocatalysts are composed of a porous backbone of interconnected CeO2 nanoparticles and Au nanoparticles, and the size of Au nanoparticles ranges from ∼30 nm to sub-10 nm, while the size of CeO2 remains at ∼15–10 nm. The surface plasmon resonance peak position and intensity contributed by the Au nanoparticles then vary accordingly. Photocatalytic CO2 reduction at the gas–solid interface is chosen as a model reaction to study the effect of Au nanoparticle size on the photocatalytic activity of composite aerogel photocatalysts. The addition of Au nanoparticles undoubtedly enhances the overall activity of the CeO2 aerogel photocatalyst, while the degree of enhancement (in terms of total charge consumption) and product selectivity (CH4 or CO) are different and correlated with the size of the Au nanoparticles. The best performance can be achieved in a composite in which the Au sizes are the smallest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.