Abstract

The interest in the Ge doped Sb–Te chalcogenide alloy is mainly related to phase change memory applications. In view of phase change device scaling and reduction of programming energy, Sb–Te nanowires (NWs) become an attractive option. In this work, in order to investigate their potential transferability to industrial implementation, the self-assembly of Sb2Te3 NWs and Ge–Sb–Te NWs with Ge content in the range of 1–13% (Ge doping) was studied by coupling the advantages of MOCVD and the Vapour–Liquid–Solid (VLS) mechanism. The results show the structural and compositional gradual changes occurring from pure Sb2Te3 NWs to the previously reported, stoichiometric Ge1Sb2Te4 NWs [[12] M. Longo et al., Nano Lett., 12 (2012) 1509]. The typical diameter of the obtained NWs resulted to be 50nm, with lengths up to 3μm. The typology of Au catalyst nanoislands influenced both the NW morphology and the Ge incorporation during the VLS self-assembly; the Ge metalorganic precursor partial pressure affected the NW morphology and their structure. Finally, TEM observations revealed that defect-free, monocrystalline Sb2Te3 and Ge-doped Sb–Te phase change NWs could be obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call