Abstract

We examined functional connectivity of the amygdala in preadolescent children with Autism Spectrum Disorders (ASDs) during spontaneous attention to eye-gaze in emotional faces. Children responded to a target word (“LEFT/RIGHT”) printed on angry or fearful faces looking in a direction that was congruent, incongruent, or neutral with the target word. Despite being irrelevant to the task, gaze-direction facilitated (Congruent > Neutral) or interfered with (Incongruent > Congruent) performance in both groups. Despite similar behavioral performance, amygdala-connectivity was atypical and more widespread in children with ASD. In control children, the amygdala was more strongly connected with an emotional cognitive control region (subgenual cingulate) during interference, while during facilitation, no regions showed greater amygdala connectivity than in ASD children. In contrast, in children with ASD the amygdala was more strongly connected to salience and cognitive control regions (posterior and dorsal cingulate) during facilitation and with regions involved in gaze processing (superior temporal sulcus), cognitive control (inferior frontal gyrus), and processing of viscerally salient information (pregenual cingulate, anterior insula, and thalamus) during interference. These findings showing more widespread connectivity of the amygdala extend past findings of atypical functional anatomy of eye-gaze processing in children with ASD and challenge views of general underconnectivity in ASD.

Highlights

  • Autism Spectrum Disorders (ASDs) are a class of neurodevelopmental disorders that share a trio of core symptoms: atypical social behavior, disrupted verbal and nonverbal communication, and patterns of restricted interests and repetitive behaviors

  • The current findings suggest that children with ASD display disordered functional connectivity in networks that underlie both the ascription of salience to social stimuli and those that modulate attention to those stimuli

  • While decreased amygdala connectivity relative to controls was seen in regions expected to mediate interfering gaze, greater amygdala connectivity was seen in several regions, including areas implicated in salience processing

Read more

Summary

Introduction

Autism Spectrum Disorders (ASDs) are a class of neurodevelopmental disorders that share a trio of core symptoms: atypical social behavior, disrupted verbal and nonverbal communication, and patterns of restricted interests and repetitive behaviors. While evidence for underconnectivity in ASD is extensive, it is not consistent as increased functional connectivity during both task and resting states has been observed in thalamocortical [13], striatocortical [14, 15], and corticocortical [16, 17] circuits. It appears that the nature of disruption in communication in ASD likely depends upon the specific task-demands and the functional circuit it engages

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call