Abstract

BackgroundUnderstanding and anticipating others’ mental or emotional states relies on the processing of social cues, such as dynamic facial expressions. Individuals with high-functioning autism (HFA) may process these cues differently from individuals with typical development (TD) and purportedly use a ‘mechanistic’ rather than a ‘mentalistic’ approach, involving rule- and contingency-based interpretations of the stimuli. The study primarily aimed at examining whether the judgments of facial expressions made by individuals with TD and HFA would be similarly affected by the immediately preceding dynamic perceptual history of that face. A second aim was to explore possible differences in the mechanisms underpinning the perceptual judgments in the two groups.MethodsTwenty-two adults with HFA and with TD, matched for age, gender and IQ, were tested in three experiments in which dynamic, ‘ecologically valid’ offsets of happy and angry facial expressions were presented. Participants evaluated the expression depicted in the last frame of the video clip by using a 5-point scale ranging from slightly angry via neutral to slightly happy. Specific experimental manipulations prior to the final facial expression of the video clip allowed examining contributions of bottom-up mechanisms (sequential contrast/context effects and representational momentum) and a top-down mechanism (emotional anticipation) to distortions in the perception of the final expression.ResultsIn experiment 1, the two groups showed a very similar perceptual bias for the final expression of joy-to-neutral and anger-to-neutral videos (overshoot bias). In experiment 2, a change in the actor’s identity during the clip removed the bias in the TD group, but not in the HFA group. In experiment 3, neutral-to-joy/anger-to-neutral sequences generated an undershoot bias (opposite to the overshoot) in the TD group, whereas no bias was observed in the HFA group.ConclusionsWe argue that in TD individuals the perceptual judgments of other’s facial expressions were underpinned by an automatic emotional anticipation mechanism. In contrast, HFA individuals were primarily influenced by visual features, most notably the contrast between the start and end expressions, or pattern extrapolation. We critically discuss the proposition that automatic emotional anticipation may be induced by motor simulation of the perceived dynamic facial expressions and discuss its implications for autism.

Highlights

  • Understanding and anticipating others’ mental or emotional states relies on the processing of social cues, such as dynamic facial expressions

  • A 3 x 2 x 2 repeated measures ANOVA was performed with the endpoint of the video (10 % anger vs. neutral vs 10 % joy) and perceptual history, and group as between-subjects factor (HFA vs. typical development (TD))

  • The results seem to be in line with a study by [48] who reported that a group of individuals with developmental pervasive disorders overestimated the intensity of facial expressions in neutral-to-emotional expression video clips similar to a TD group, to a lesser extent

Read more

Summary

Introduction

Understanding and anticipating others’ mental or emotional states relies on the processing of social cues, such as dynamic facial expressions. Individuals with high-functioning autism (HFA) may process these cues differently from individuals with typical development (TD) and purportedly use a ‘mechanistic’ rather than a ‘mentalistic’ approach, involving rule- and contingency-based interpretations of the stimuli. The ability to interpret social cues conveyed by an agent as reflecting the agent’s mental or emotional state, allowing the observer to anticipate the agent’s behaviour, is essential for successful social interactions. The extent to which atypical social and emotional behaviour in individuals with HFA reflects an impaired ability for implicit (automatic, non-volitional) rather than explicit (inferential, volitional, involving awareness) understanding is still unclear [7, 8]. A failure in implicit or automatic understanding may be (partly) compensated by explicit reasoning on the basis of contextual information [2, 13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call