Abstract

Microglia are resident macrophages that are critical for brain development and homeostasis. Microglial morphology is dynamically changed during postnatal stages, leading to regulating synaptogenesis and synapse pruning. Moreover, it has been well known that the shape of microglia is also altered in response to the detritus of the apoptotic cells and pathogens such as bacteria and viruses. Although the morphologic changes are crucial for acquiring microglial functions, the exact mechanism which controls their morphology is not fully understood. Here, we report that the FAT atypical cadherin family protein, FAT3, regulates the morphology of microglial cell line, BV2. We found that the shape of BV2 becomes elongated in a high-nutrient medium. Using microarray analysis, we identified that FAT3 expression is induced by culturing with a high-nutrient medium. In addition, we found that purinergic analog, hypoxanthine, promotes FAT3 expression in BV2 and mouse primary microglia. FAT3 expression induced by hypoxanthine extends the time of sustaining the elongated forms in BV2. These data suggest that the hypoxanthine-FAT3 axis is a novel pathway associated with microglial morphology. Our data provide a possibility that FAT3 may control microglial transitions involved in their morphologic changes during the postnatal stages in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.