Abstract

Muscle differentiation is a multifaceted and tightly controlled process required for the formation of skeletal muscle fibers. Satellite cells are the direct cellular contributors to muscle repair in injuries or disorders. Here, we show that autotaxin (Atx) expression and activity is required for satellite cell differentiation. Conditional ablation of Atx or its pharmacological inhibition impairs muscle repair. Mechanistically, we identify LPAR1 as the key receptor in Atx-LPA signaling. Myogenic gene array and pathway analysis identified that Atx-LPA signaling activates ribosomal protein S6 kinase (S6K), an mTOR-dependent master regulator of muscle cell growth via LPAR1. Furthermore, Atx transgenic mice show muscle hypertrophic effects and accelerated regeneration. Intramuscular injections of Atx/LPA show muscle hypertrophy. In addition, the regulatory effects of Atx on differentiation are conserved in human myoblasts. This study identifies Atx as a critical master regulator in murine and human muscles, identifying a promising extracellular ligand in muscle formation, regeneration, and hypertrophy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.