Abstract
Consideration is given to Atwood number (non-dimensional density difference) effects in buoyancy driven flows. Buoyancy driven (natural convection) flows may be treated as Boussinesq for small Atwood number, but as Atwood number increases (>0.1, i.e. large temperature differences) the Boussinesq approximation is no longer valid and the distinct “bubble” and “spike” geometry of Rayleigh– Taylor buoyant plumes is formed. Aside from asymmetry in the flow the Atwood number also affects key turbulent mix parameters such as the molecular mix, and heat transfer coefficients. This paper will present recent experimental work being performed in the buoyancy driven mix laboratory at Texas A&M University with air/helium as mixing components. Corresponding numerical simulations performed at Los Alamos are presented for the experiments, and future directions for the research discussed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.