Abstract

Abstract The Southern Hemisphere temperature has experienced obvious changes with great spatial differences over the past several decades. Most regions show extreme warming, especially those located at 35°–55°S. In contrast, subsurface cooling exists between 15° and 35°S in the Indian and Pacific basins. The subsurface temperature and salinity change can be divided into spiciness change and heave components. The results show the warming due to isopycnal movement being largely offset by significant spiciness cooling at middepth. Surface warming and subduction into the interior ocean account for subsurface spiciness cooling near 45°S, while surface freshening and penetration along isopycnals are more important to the subsurface spiciness cooling farther north. The isobaric temperature change is associated with pure warming and pure heaving, and the subsurface cooling observed in the Indian and Pacific subtropics is predominantly attributed to pure heaving. This study provides a quantitative estimate of the relative contribution of surface temperature, salinity change, and circulation adjustment in subsurface temperature change, highlighting the importance of circulation change in producing subsurface cooling. Further research is needed to understand why different processes dominate in different ocean sections. Significance Statement While the global ocean is warming, the subsurface temperature change exhibits a significant regional disparity. This paper attempts to explain the deep-reaching warming at 35°–55°S and cooling at 15°–35°S based on three historical observation datasets. We find that the cooling mostly occurs between 400 and 1000 m in the south Indian and Pacific subtropics (15°–35°S), which is attributed to pure heaving, indicating the importance of circulation change in these regions. The midlatitude warming (35°–55°S) is mainly caused by the pure warming process, which is related to heat uptake at the subpolar surface and northward and downward heat transport. The spiciness cooling near 45°S is mainly driven by the subduction of the surface warming signal while the freshening process has a stronger impact on spiciness cooling farther north.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call