Abstract

ABSTRACT Observations indicate large changes in temperature extremes over China during the last four decades, exhibiting as significant increases in the amplitude and frequency of hot extremes and decreases in the amplitude and frequency of cold extremes. An ensemble of transient experiments with the fully coupled atmosphere–ocean model HadGEM3-GC2, including both anthropogenic forcing and natural forcing, successfully reproduces the spatial pattern and magnitude of observed historical trends in both hot and cold extremes. The model-simulated trends in temperature extremes primarily come from the positive trends in clear-sky longwave radiation, which is mainly due to the increases in greenhouse gases (GHGs). An ensemble of sensitivity experiments with Asian anthropogenic aerosol (AA) emissions fixed at their 1970s levels tends to overestimate the trends in temperature extremes, indicating that local AA emission changes have moderated the trends in these temperature extremes over China. The recent increases in Asian AA drive cooling trends over China by inducing negative clear-sky shortwave radiation directly through the aerosol–radiation interaction, which partly offsets the strong warming effect by GHG changes. The cooling trends induced by Asian AA changes are weaker over northern China during summer, which is due to the warming effect by the positive shortwave cloud radiative effect through the AA-induced atmosphere–cloud feedback. This accounts for the observed north–south gradients of the historical trends in some temperature extremes over China, highlighting the importance of local Asian AA emission changes on spatial heterogeneity of trends in temperature extremes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call