Abstract

ABSTRACT The lack of associating pedestrian networks, i.e. the paths and roads used for non-vehicular travel, with information about semantic attribution is a major weakness for many applications, especially those supporting accurate pedestrian routing. Researchers have developed various algorithms to generate pedestrian walkways based on datasets, including high-resolution images, existing map databases, and GPS data; however, the semantic attribution of pedestrian walkways is often ignored. The objective of our study is to automatically extract semantic information including incline values and the different categories of pedestrian paths from multi-source spatial data, such as crowdsourced GPS tracking data, land use data, and motor vehicle road (MVR) networks. Incline values for each pedestrian path were derived from tracking data through elevation filtering using wavelet theory and a similarity-based map-matching method. To automatically categorize pedestrian paths into five classes including sidewalk, crosswalk, entrance walkway, indoor path, and greenway, we developed a hierarchical strategy of spatial analysis using land use data and MVR networks. The effectiveness of our proposed method is demonstrated using real datasets including GPS tracking data collected by volunteers, land use data acquired from OpenStreetMap, and MVR network data downloaded from Gaode Map.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call