Abstract
This paper studies the one-shot and zero-shot learning problems, where each object category has only one training example or has no training example at all. We approach this problem by transferring knowledge from known categories (a.k.a source categories) to new categories (a.k.a target categories) via object attributes. Object attributes are high level descriptions of object categories, such as color, texture, shape, etc. Since they represent common properties across different categories, they can be used to transfer knowledge from source categories to target categories effectively. Based on this insight, we propose an attribute-based transfer learning framework in this paper. We first build a generative attribute model to learn the probabilistic distributions of image features for each attribute, which we consider as attribute priors. These attribute priors can be used to (1) classify unseen images of target categories (zero-shot learning), or (2) facilitate learning classifiers for target categories when there is only one training examples per target category (one-shot learning). We demonstrate the effectiveness of the proposed approaches using the Animal with Attributes data set and show state-of-the-art performance in both zero-shot and one-shot learning tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.