Abstract

With hundreds or thousands of attributes in high-dimensional data, the computational workload is challenging. Attributes that have no meaningful influence on class predictions throughout the classification process increase the computing load. This article's goal is to use attribute selection to reduce the size of high-dimensional data, which will lessen the computational load. Considering selected attribute subsets that cover all attributes. As a result, there are two stages to the process: filtering out superfluous information and settling on a single attribute to stand in for a group of similar but otherwise meaningless characteristics. Numerous studies on attribute selection, including backward and forward selection, have been undertaken. This experiment and the accuracy of the categorization result recommend a k-means based PSO clustering-based attribute selection. It is likely that related attributes are present in the same cluster while irrelevant attributes are not identified in any clusters. Datasets for Credit Approval, Ionosphere, Annealing, Madelon, Isolet, and Multiple Attributes are employed alongside two other high-dimensional datasets. Both databases include the class label for each data point. Our test demonstrates that attribute selection using k-means clustering may be done to offer a subset of characteristics and that doing so produces classification outcomes that are more accurate than 80%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.