Abstract

Network intrusion detection is one of the most visible uses for Big Data analytics. One of the main problems in this application is the constant rise of new attacks. This scenario, characterized by the fact that not enough labeled examples are available for the new classes of attacks is hardly addressed by traditional machine learning approaches. New findings on the capabilities of Zero-Shot learning (ZSL) approach makes it an interesting solution for this problem because it has the ability to classify instances of unseen classes. ZSL has inherently two stages: the attribute learning and the inference stage. In this paper we propose a new algorithm for the attribute learning stage of ZSL. The idea is to learn new values for the attributes based on decision trees (DT). Our results show that based on the rules extracted from the DT a better distribution for the attribute values can be found. We also propose an experimental setup for the evaluation of ZSL on network intrusion detection (NID).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.