Abstract
Graph embedding plays an important role in the analysis and study of typical non-Euclidean data, such as graphs. Graph embedding aims to transform complex graph structures into vector representations for further machine learning or data mining tasks. It helps capture relationships and similarities between nodes, providing better representations for various tasks on graphs. Different orders of neighbors have different impacts on the generation of node embedding vectors. Therefore, this paper proposes a multi-order adjacency view encoder to fuse the feature information of neighbors at different orders. We generate different node views for different orders of neighbor information, consider different orders of neighbor information through different views, and then use attention mechanisms to integrate node embeddings from different views. Finally, we evaluate the effectiveness of our model through downstream tasks on the graph. Experimental results demonstrate that our model achieves improvements in attributed graph clustering and link prediction tasks compared to existing methods, indicating that the generated embedding representations have higher expressiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.