Abstract

This paper is the second one in the series of two papers devoted to detailed investigation of the response regimes of a linear oscillator with attached nonlinear energy sink (NES) under harmonic external forcing and assessment of possible application of the NES for vibration absorption and mitigation. In this paper, we study the performance of a strongly nonlinear, damped vibration absorber with relatively small mass attached to a periodically excited linear oscillator. We present a nonlinear absorber tuning procedure in the vicinity of (1:1) resonance which provides the best total system energy suppression, using analytical and numerical tools. A linear absorber is also tuned according to the same criterion of total system energy suppression as the nonlinear one. Both optimally tuned absorbers are compared under common parameters of damping, external forcing but different absorber stiffness characteristics; certain cases for which nonlinear absorber is preferable over the linear one are revealed and confirmed numerically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call