Abstract

This paper explores the effect of initial conditions on the behavior of coupled frictional elastic systems subject to periodic loading. Previously, it has been conjectured that the long term response will be independent of initial conditions if all nodes slip at least once during each loading cycle. Here, this conjecture is disproved in the context of a simple two-node system. Counter examples are presented of “unstable” steady-state orbits that repel orbits starting from initial conditions that are sufficiently close to the steady state. The conditions guaranteeing stability of such steady states are shown to be more restrictive than those required for the rate problem to be uniquely solvable for arbitrary derivative of the external loading. In cases of instability, the transient orbit is eventually limited either by slip occurring at both nodes simultaneously, or by one node separating. In both cases a stable limit cycle is obtained. Depending on the slopes of the constraint lines, the limit cycle can involve two periods of the loading cycle, in which case it appears to be unique, or it may repeat every loading cycle, in which case distinct limit cycles are reached depending on the sign of the initial deviation from the steady state. In the case of instability an example is given of a loading for which a quasi-static evolution problem with multiple solutions exists, whereas all rate problems are uniquely solvable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.