Abstract
This paper is concerned with the long-time dynamics of a fluid-structure interaction problem describing a Poiseuille inflow through a 2D channel containing a rectangular obstacle. Physically, this models the interaction between the wind and the deck of a bridge in a wind tunnel experiment, as time goes to infinity. Due to this interaction, the fluid domain depends on time in an unknown fashion and the problem needs a delicate functional analytic setting. As a result, the solution operator associated to the system acts on a time-dependent phase space, and it cannot be described in terms of a semigroup nor of a process. Nonetheless, we are able to extend the notion of global attractor to this particular setting, and prove its existence and regularity. This provides a strong characterization of the asymptotic behavior of the problem. Moreover, when the inflow is sufficiently small, the attractor reduces to the unique stationary solution of the system, corresponding to a perfectly symmetric configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.