Abstract
AbstractWe consider a conserved phase‐field system of Caginalp type, characterized by the assumption that both the internal energy and the heat flux depend on the past history of the temperature and its gradient, respectively. The latter dependence is a law of Gurtin–Pipkin type, so that the equation ruling the temperature evolution is hyperbolic. Thus, the system consists of a hyperbolic integrodifferential equation coupled with a fourth‐order evolution equation for the phase‐field. This model, endowed with suitable boundary conditions, has already been analysed within the theory of dissipative dynamical systems, and the existence of an absorbing set has been obtained. Here we prove the existence of the universal attractor. Copyright © 2004 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.