Abstract

ABSTRACT Combining biomechanics and motor control, the aim of this study was to investigate the limit cycle dynamics during the high bar longswing across the UK elite gymnastics pathway age groupings. Senior, junior and development gymnasts (N = 30) performed three sets of eight consecutive longswings on the high bar. The centre of mass motion was examined through Poincaré plots and recurrence quantification analysis exploring the limit cycle dynamics of the longswing. Close to one-dimensional limit cycles were displayed for the senior (correlation dimension (CD) = 1.17 ± .08), junior (CD = 1.26 ± .08) and development gymnasts (CD = 1.33 ± .14). Senior elite gymnasts displayed increased recurrence characteristics in addition to longer longswing duration (p < .01) and lower radial angular velocity of the mass centre (p < .01). All groups of gymnasts had highly recurrent and predictable limit cycle characteristics. The findings of this research support the postulation that the further practice, experience and individual development associated with the senior gymnasts contribute to the refinement of the longswing from a nonlinear dynamics perspective. These findings support the idea of functional task decomposition informing the understanding of skill and influencing coaches’ decisions around skill development and physical preparation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.