Abstract
Photovoltaic (PV) panels contribute to overall building’s loads, but generally have their impacts offset at the operational stage. For increasingly renewable electricity grids, PV’s contribution to lowering non-renewable energy becomes less significant. This paper aims at investigating the non-renewable cumulative energy demand (CEDnren) and global warming potential (GWP) payback times associated to onsite PV generation in the highly renewable Brazilian grid, considering a 50-year building service life. Operational energy consumption was simulated in Energy Plus. CEDnren and GWP were calculated through the CED method and CML-IA, respectively. SimaPro 7.3 and Ecoinvent 2.2 supported performed LCAs. Different PV settings were analyzed to rank the most effective technological options. Amorphous and single-Si panels performed worst (around 17 years of non-renewable CED payback time, whilst for GWP the payback time was much shorter for all technologies). PV’s production and replacement loads played a significant role, therefore technological investments to increase panels’ durability and improve manufacturing efficiency could ensure its attractiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.