Abstract
We study the interplay between the Hofstadter butterfly, strong interactions and Zeeman field within the mean-field Bogoliubov-de Gennes theory in real space, and explore the ground states of the attractive single-band Hofstadter-Hubbard Hamiltonian on a square lattice, including the exotic possibility of imbalanced vector potentials. We find that the cooperation between the vector potential and superfluid order breaks the spatial symmetry of the system, and flourish stripe-ordered Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-like superfluid and supersolid phases that can be distinguished and characterized according to their coexisting pair-density (PDW), charge-density (CDW) and spin-density (SDW) wave orders. We also discuss confined systems and comment on the likelihood of observing such stripe-ordered phases by loading neutral atomic Fermi gases on laser-induced optical lattices under laser-generated artificial gauge fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.