Abstract

We consider the fluctuation-induced (Casimir) pressure in peptide films deposited on GaAs, Ge, and ZnS substrates which are either in a dielectric or metallic state. The calculations of the Casimir pressure are performed in the framework of the fundamental Lifshitz theory employing the frequency-dependent dielectric permittivities of all involved materials. The electric conductivity of semiconductor substrates is taken into account within the experimentally and thermodynamically consistent approach. According to our results, the Casimir pressure in peptide films deposited on dielectric-type semiconductor substrates vanishes for some definite film thickness and is repulsive for thinner and attractive for thicker films. The dependence of this effect on the fraction of water in the film and on the static dielectric permittivity of the semiconductor substrate is determined. For the metallic-type semiconductor substrates, the Casimir pressure in peptide coatings is shown to be always repulsive. The possible applications of these results to the problem of stability of thin coatings in microdevices are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call