Abstract

The redbay ambrosia beetle, Xyleborus glabratus, is an important pest of redbay (Persea borbonia) and swamp bay (P. palustris) trees in forests of the southeastern USA. It is also a threat to commercially grown avocado. The beetle is attracted to host wood volatiles, particularly sesquiterpenes. Contrary to other ambrosia beetles that attack stressed, possibly pathogen-infected, and dying trees, X. glabratus readily attacks healthy trees. To date little is known about the role of leaf volatiles in the host selection behavior and ecology of X. glabratus. To address this question, an olfactometer bioassay was developed to test the behavioral response of X. glabratus to plant leaf volatiles. We found that X. glabratus was attracted to the leaf odors of their hosts, redbay and swamp bay, with no attraction to a non-host tree tested (live oak, Quercus virginiana), which served as a negative control. Gas chromatography-mass spectrometry (GS/MS) analysis of leaves revealed the absence of sesquiterpenes known to be attractive to X. glabratus and present in host wood, suggesting that additional leaf-derived semiochemicals may serve as attractants for this beetle. An artificial blend of chemicals was developed based on GC/MS analyses of leaf volatiles and behavioral assays. This blend was attractive to X. glabratus at a level that rivaled currently used lures for practical monitoring of this pest. This synthetic redbay leaf blend also was tested in the field. Baited traps captured more X. glabratus than unbaited controls and equivalently to manuka oil lures. We hypothesize that leaf volatiles may be used by X. glabratus as an additional cue for host location.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.