Abstract

In this study, the attosecond transient absorption (ATA) spectrum below the excited states of the helium atom was investigated by numerically solving the fully three-dimensional time-dependent Schrödinger equation. Under single-active electron approximation, the helium atom was illuminated by a combined field comprising of extreme ultraviolet (XUV) and delayed infrared (IR) fields. The response function demonstrates that the absorption near the central frequency (ωX) of the XUV field is periodically modulated during the overlapping between the XUV and IR pulses. Using the time-dependent perturbation, the absorption near ωX is attributed to the wavepacket excited by the XUV pulse. The wave function oscillating at the frequency of the XUV pulse was obtained. Furthermore, the chirp-dependent absorption spectrum near ωX potentially provides an all-optical method for characterizing the attosecond pulse duration. Finally, these results can extend to other systems, such as solids or liquids, indicating a potential for application in photonic devices, and they may be meaningful for quantum manipulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.