Abstract

We present fully ab initio simulations of attosecond streaking for ionization of helium accompanied by shakeup of the second electron. This process represents a prototypical case for strongly correlated electron dynamics on the attosecond time scale. We show that streaking spectroscopy can provide detailed information on the Eisenbud-Wigner-Smith time delay as well as on the infrared-field dressing of both bound and continuum states. We find a novel contribution to the streaking delay that stems from the interplay of electron-electron and infrared-field interactions in the exit channel. We quantify all the contributions with attosecond precision and provide a benchmark for future experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call