Abstract

AbstractNumerical solutions of the time‐dependent Schrödinger equation for a 1D model non‐Born–Oppenheimer H are used to illustrate the nonlinear nonperturbative response of molecules to intense (I ≥ 1013 W/cm2), ultrashort (t < 10 fs) laser pulses. Molecular high‐order harmonic generation (MHOHG) is shown to be an example of such response and the resulting nonlinear photon emission spectrum is shown to lead to the synthesis of single attosecond (10−18 s) pulses. Application of such ultrashort pulses to the H system results in localized electron wavepackets whose motion can be detected by asymmetry in the photoelectron spectrum generated by a subsequent probe attosecond pulse, thus leading to measurement of electron motion in molecules on the attosecond time scale. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.