Abstract

It is well established that electrons can escape from atoms through tunneling under the influence of strong laser fields, but the timing of the process has been controversial and far too rapid to probe in detail. We used attosecond angular streaking to place an upper limit of 34 attoseconds and an intensity-averaged upper limit of 12 attoseconds on the tunneling delay time in strong field ionization of a helium atom. The ionization field derives from 5.5-femtosecond-long near-infrared laser pulses with peak intensities ranging from 2.3 x 10(14) to 3.5 x 10(14) watts per square centimeter (corresponding to a Keldysh parameter variation from 1.45 to 1.17, associated with the onset of efficient tunneling). The technique relies on establishing an absolute reference point in the laboratory frame by elliptical polarization of the laser pulse, from which field-induced momentum shifts of the emergent electron can be assigned to a temporal delay on the basis of the known oscillation of the field vector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.