Abstract

Shape resonances play a central role in many areas of science, but the real-time measurement of the associated many-body dynamics remains challenging. Here, we present measurements of recoil frame angle-resolved photoionization delays in the vicinity of shape resonances of CF4. This technique provides insights into the spatiotemporal photoionization dynamics of molecular shape resonances. We find delays of up to ∼600 as in the ionization out of the highest occupied molecular orbital (HOMO) with a strong dependence on the emission direction and a pronounced asymmetry along the dissociation axis. Comparison with quantum-scattering calculations traces the asymmetries to the interference of a small subset of partial waves at low kinetic energies and, additionally, to the interference of two overlapping shape resonances in the HOMO-1 channel. Our experimental and theoretical results establish a broadly applicable approach to space- and time-resolved photoionization dynamics in the molecular frame.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.