Abstract

Kinetic-energy spectra of a single electron from strong-field nonsequential double ionization are investigated in a high-intensity regime with a quantum mechanical model. We find interference fringes with large energy spacings, which increases with the electron kinetic energy. These interference fringes originate from the electronic wave packets born in the recollision by the returning electronic wave packets from the ``short'' and the ``long'' quantum paths. Since the recollision happens in a fraction of a near-infrared (NIR) optical cycle, i.e., in an attosecond time interval, the resulting interference fringes exhibit energy spacings much larger than the NIR photon energy. The comparison of the quantum mechanical results with a classical collision model suggests a near-equal energy sharing between two electrons during the recollision process at very high intensities, in contrast to the extremely unequal energy sharing at low intensities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.