Abstract
The dynamics of photoexcitation of the hydrogen atom in the discrete and continuous spectra under the action of laser pulses in the attosecond range of time and pulse durations has been analyzed using perturbation theory. It is shown that over time interval shorter than or on the order of pulse duration, the time dependence of the photoexcitation probability is generally oscillating by nature. It has been established that for certain values of parameters, the envelope of this dependence has a peak, the position of which is determined by the pulse duration and carrier frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.