Abstract

We show how ultrafast gas-phase X-ray and electron diffraction signals can be combined to generate real-space movies of charge migration dynamics in molecules. Charge migration denotes short time electronic charge redistribution upon photoexcitation of molecules where the nuclei are frozen. In this regime, we identify a mixed electronic-nuclear interference term that can be cleanly singled out. Using the ground-state nuclear structure as a reference, the phase information in this signal allows its inversion to real space and the capture of electronic charge density movies on the attosecond time scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.