Abstract
Surface-enhanced Raman scattering (SERS) is a multidisciplinary trace analysis technique based on plasmonic effects. The development of SERS microfluidic chips has been exploited extensively in recent times impacting on applications in diverse fields. However, despite much progress, the excitation of label-free molecules is extremely challenging when analyte concentrations are lower than 1 nM because of the blinking SERS effect. In this paper, a novel analytical strategy which can achieve detection limits at an attomolar level is proposed. This performance improvement is due to the use of a glass microfluidic chip that features an analyte air-solution interface which forms on the SERS substrate in the microfluidic channel, whereby the analyte molecules aggregate locally at the interface during the measurement, hence the term liquid interface-assisted SERS (LI-SERS). The microfluidic chips are fabricated using hybrid femtosecond (fs) laser processing consisting of fs laser-assisted chemical etching, selective metallization, and metal surface nanostructuring. The novel LI-SERS technique can achieve an analytical enhancement factor of 1.5 × 1014, providing a detection limit below 10-17 M (<10 aM). The mechanism for the extraordinary enhancement afforded by LI-SERS is attributed to Marangoni convection induced by the photothermal effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.