Abstract

We developed a route for synthesizing Ag nanostructures with tunable morphologies for ultrasensitive surface-enhanced Raman spectroscopy. Through the consecutive addition of three reducing agents (i.e., 4-mercaptobenzoic acid, trisodium citrate, and ascorbic acid) to an aqueous solution of silver nitrate, hierarchical flower-like Ag nanostructures were produced. The nanostructures had Ag petals in which nanosized gaps were generated, and small Ag nanoparticles were incorporated within the gaps. Theoretically, the nanostructures exhibited highly enhanced electric fields in the outer-shell regions where the small Ag nanoparticles were densely located. Combining the enhanced field effect with resonance effect of a Raman-active molecule (methylene blue) at a specific wavelength, measurable Raman signals were obtained at concentrations as low as 100 attomolar (10(-16) M; corresponding to 10(-21) mol). Key factors were discussed for the synthesis of the Ag nanostructures while finely controlling the morphologies of hierarchical Ag nanostructures, thereby modulating the intensity of surface-enhanced resonance Raman spectroscopy (SERRS) signals. Therefore, this synthetic method produces highly promising nanostructures for SERRS-based applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.