Abstract

Recently there has been a great deal of excitement over the emergence of new techniques for the attitude control of small satellites. In particular, the feasibility of nonlinear techniques for the attitude control of small satellites using only magnetic actuators is becoming a topic of increasing interest in the literature. Since magnetic control systems are relatively lightweight, require low power and are inexpensive, they are attractive for small, inexpensive satellites in low Earth orbits. Although the magnetic torques that can be applied to the spacecraft for attitude control purposes are constrained to lie in the plane orthogonal to the magnetic field vector, three-axis magnetic stabilization is still possible as the variability of the magnetic field along the considered orbit is sufficient to guarantee the stabilizability of the spacecraft. In this paper we present novel three-axis attitude control algorithms for small satellites using only magnetic torquers and investigate their performance through simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call