Abstract

This paper presents a novel approach to tackle the issues of attitude manoeuvre control and asymptotic disturbance rejection for a flexible spacecraft. The resulting attitude controller employs an internal model-based compensator to reject a class of persistent disturbances and a modal estimator for dynamic compensation of the rigid-flex coupling effect. The convergence of the modal variables can be guaranteed without the measures of them. The stability of the system is proved via the Lyapunov technique rigorously. Numerical results illustrate that improved attitude control performance and asymptotic disturbance rejection can both be achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call