Abstract
In this paper, two types of computational procedures are presented for a rest-to-rest spacecraft maneuver using a variable-speed double-gimbal control moment gyro (VSDGCMG). The first procedure is a numerical computational procedure in which a quasi-time-optimal trajectory satisfying several physical constraints is obtained by repeating the Newton’s method. The other procedure is an approximate computational procedure in which an analytical solution is obtained by approximately solving a series of linear optimal control problems. The two procedures play complementary roles: the former is suitable for implementation, and the latter can be used to select an initial value for use in the former. The effectiveness of the proposed procedures is demonstrated by plotting the surfaces of maneuvering time for all rotational axes and by plotting time responses for several maneuvering examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.