Abstract

This paper studies the attitude dynamics of a rigid body in a Keplerian orbit. We show that the use of Classical Rodrigues Parameters for the attitude motion of the rigid body subject to gravity-gradient torques enables us to characterize the equilibria associated with the rotational motion about its mass center. A parametric study of the stability of equilibria is conducted to show that large oscillations are induced due to the energy exchange between the pitch and roll–yaw motions, specifically near the 2:1 resonant commensurability regions. A visualization tool is developed to study these pitch oscillations and gain insight into the rigid body motion near internal resonance conditions. A measure of coupling between the pitching and roll–yaw motions is developed to quantify the energy exchange utilizing information from the state transition matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.