Abstract

For the attitude control of unmanned helicopters used in the intelligent patrolling of coal mines, a spiking neural membrane system is introduced for attitude optimisation control. First, a geometry-based attitude dynamics model suitable for coal mine scenarios is constructed. Second, in accordance with the attitude dynamics model, an extended spiking neural membrane system (ESNMS) is constructed, and an optimised spiking neural membrane system (OSNMS) and accompanying algorithm are designed to optimise the ESNMS. Then, the attitude control performance of the developed system is theoretically analysed. Finally, through the simulation of a semiphysical experimental platform, trajectory tracking is effectively realised. Under normal and wind disturbance conditions, comparisons with the traditional synovium controller (TSC) and linear feedback controller (LFC) show that the performance of the designed OSNMS is greatly improved, and the experimental results show that the OSNMS has good stability and effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.