Abstract

With the long-term running of an on-orbit satellite, parameters in its attitude model are naturally altered due to the wastage of on-board components and the consumption of propellants or pay loads. In order to obtain high-accuracy attitude-control models and improve the on-orbit adaptation of an attitude controller, identification of an on-orbit satellite becomes another available approach. Due to the effect of exogenous disturbing torques and the measurement noises, estimation of the attitude-control models is eventually converted into that of an errors-in-variables model (EIVM). Since any a priori information on disturbing noises is not known in the on-orbit environment, an L 2 -optimal identification algorithm is proposed to estimate a generalized attitude model (GAM) for the satellite and then the corresponding noise model (NM) can be readily given by a model transformation to the GAM. During the parameter optimization for GAM, v-gap metric is employed as a minimization criterion to reduce the conservativeness of the resulting model and the optimization problem can be solved by linear matrix inequalities (LMIs). Finally, the testbed of a micro-satellite simulator is utilized to demonstrate the effectiveness of the proposed identification algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.