Abstract
Unlike ground-base robot manipulator, the space manipulator has no fixed base. The dynamic reaction forces and moments due to the manipulator motion will disturb the space base, especially, when the space robot is in free-floating situation, The longer the motion time of space manipulator is, the greater the disturbance to the base will be. Hence, it is essential to resolve the attitude balance problem of a space robot during the manipulator operation. The position disturbance of the base may not be an issue. The attitude change, however, is more serious because the solar panel and tele-command from the ground station should keep their life lines. On the other hand, the attitude changes possibly cause the serious collision between the manipulator hand and the target. Therefore, the attitude balance problem of free floating space robot is a challenge problem about the application of space robot in space operation. Nowadays, space robots are aiding to construct and maintain the International Space Station (ISS) and servicing the space telescope. Therefore, space robotic servicing for satellite such as rescue, repair, refuelling and maintenance, promising to extend satellite life and reduce costs, made it one of the most attractive areas of developing space technology. Space robots are likely to play more and more important roles in satellite service mission and space construction mission in the future. A well known space robot, the Shuttle Remote Manipulator System (SRMS or “Canadarm”) (D. Zimpfer and P. Spehar, 1996) was operated to assist capture and berth the satellite from the shuttle by the astronaut. NASA missions STS-61, STS-82, and STS-103 repaired the Hubble Space Telescope by astronauts with the help of SRMS. Engineering Test Satellite VII (ETS-VII) from NASDA of Japan demonstrated the space manipulator to capture a cooperative satellite whose attitude is stabilized during the demonstration via tele-operation from the ground base controln station (I. Kawano, et al. 1998), (Oda, M.1999), (Oda, M., 2000), (Noriyasu Inaba, et al, 2000). The space robotic technologies mentioned above demonstrated the usefulness of space robot for space service. During the ETS-VII operation, the engineers considered the coordinated
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.