Abstract

A gyroscope-free strapdown inertial navigation system (GFSINS) solves the carrier attitude through the reasonable spatial combination of accelerometers, with a particular focus on the precision of angular velocity calculation. This paper conducts an analysis of a twelve-accelerometer configuration scheme and proposes an angular velocity fusion algorithm based on the Kalman filter. To address the sign misjudgment issue that may arise when calculating angular velocity using the extraction algorithm, a sliding window correction method is introduced to enhance the accuracy of angular velocity calculation. Additionally, the data from the integral algorithm and the data from the improved extraction algorithm are fused using Kalman filtering to obtain the optimal estimation of angular velocity. Simulation results demonstrate that this algorithm significantly reduces the maximum value and standard deviation of angular velocity error by one order of magnitude compared to existing algorithms. Experimental results indicate that the algorithm's calculated angle exhibits an average difference of less than 0.5° compared to the angle measured by the laser tracker. This level of accuracy meets the requirements for attitude measurement in the laser scanning projection system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.