Abstract

Spinel type nano-sized ferrite compounds AFe2O4 (A=Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel at 400°C under air atmosphere for 4h. The crystal structure, chemical composition, morphology and magnetic properties of the synthesized samples were characterized by X−ray diffraction, Fourier transform infrared spectroscopy, X−ray photoelectron spectroscopy, Energy dispersive X−ray, Scanning and Transmission electron microscopy and vibrating sample magnetometer. The chemical reaction and role of fuel on the nanoparticles formation were discussed. The XRD pattern of the synthesized samples shows the formation of pure phase with average crystallite size of 97, 57 and 98nm from Scherrer formula and 86, 54 and 87nm from Williamson and Hall (W–H) formula respectively. FTIR absorption spectra revealed that the presence of strong absorption peaks near 400–600cm−1 corresponds to tetrahedral and octahedral complex of spinel ferrites. The relative concentrations of electronic states of elements such as cobalt (Co2+ and Co3+), iron (Fe2+ and Fe3+) and manganese (Mn2+ and Mn3+) oxidation states were studied from XPS and it is found that 55% of Fe ions are in Fe2+ state and the remaining is in Fe3+ state and thus the cationic distribution of Fe ions occurred in both tetrahedral and octahedral sites. SEM analysis indicates the presence of pore like morphology which is nearly homogenous because of combustion process. EDS analysis confirms the presence of elements in the ferrite samples. By replacing the active ‘A’ site cations in AFe2O4 (A=Co, Mg and Mn) samples show the different magnetic properties. The parameters like saturation magnetization, coercivity and remnant magnetization obtained from M−H loops are studied in room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.