Abstract

Activated microglia exhibit two opposite activation states, the inflammatory M1 and the anti-inflammatory M2 activation states. In the mammalian brain, ischemia elicits a massive release of zinc from hippocampal neurons, and the extracellular zinc primes M1 microglia-by inducing reactive oxygen species (ROS) generation-to enhance their production of proinflammatory cytokines, which ultimately results in short-term spatial memory impairment. Here, we examined how peridinin, a carotenoid in dinoflagellates, affects the zinc-enhanced inflammatory M1 phenotype of microglia. Treatment of microglia with 30-300 ng/mL peridinin caused a dose-dependent attenuation of zinc-enhanced interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNFα) secretion when M1 activation was induced by lipopolysaccharide exposure. Moreover, peridinin inhibited the increase in ROS levels in zinc-treated microglia without directly interacting with zinc. Notably, when mice were administrated peridinin (20-200 ng/animal) intracerebroventricularly 5 min before cerebral ischemia-reperfusion, the peridinin treatment not only suppressed the increase in expression of IL-1β, IL-6, TNFα, and the microglial M1 surface marker CD16/32, but also protected the mice against ischemia-induced short-term spatial-memory impairment. Our findings suggest that peridinin prevents extracellular zinc-enhanced proinflammatory cytokine secretion from M1 microglia by inhibiting the increase in microglial ROS levels, and that this anti-inflammatory effect of peridinin might result in protection against deficits in short-term spatial memory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.