Abstract
Chronic progressive external ophthalmoplegia (CPEO) syndrome is one of the mitochondrial diseases caused by large-scale deletions in mitochondrial DNA (mtDNA) that impair the respiratory function of mitochondria and result in decreased production of ATP in affected tissues. In order to investigate whether CPEO-associated mtDNA mutations (i.e., 4,366-bp and 4,977-bp large-scale deletions) render human cells more vulnerable to apoptosis, we constructed cybrids carrying the deleted mtDNA. Assays for cell viability, DNA fragmentation, cytochrome c release, and caspase 3 activation revealed that UV irradiation at 20 J/m2 triggered apoptosis in all the cybrids. This treatment also produced elevated intracellular levels of reactive oxygen species (ROS). The rate of UV-induced cell death was more pronounced in the cybrids harboring mtDNA deletions than in the control cybrid with wild-type mtDNA. Subsequently, we evaluated the effect of coenzyme Q10 on the UV-triggered apoptosis. The results showed that after pretreatment of the cybrids with 100 microM coenzyme Q10 the UV-induced cell damage (i.e., ROS production and activation of caspase 3) was significantly reduced. Taken together, these findings suggest that large-scale deletions of mtDNA increased the susceptibility of human cells to the UV-triggered apoptosis and that coenzyme Q10 mitigated the damage; hence, it might potentially serve as a therapeutic agent to treat mitochondrial diseases resulting from mtDNA deletions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.