Abstract

A novel method for control of convective boundary layer instabilities using metamaterial concepts is investigated. Attenuation of Tollmien–Schlichting (TS) waves with surface-embedded one-dimensional phononic crystals (PCs) is theoretically and numerically modeled, capitalizing on the inherent frequency band stop of PCs. The PC is tuned to the targeted TS wave characteristics through the use of analytical models derived from transfer matrix and interface response theories, verified using a finite elements analysis. The interaction between TS waves and a single PC is investigated using coupled two-dimensional fluid structure interaction simulations in the frequency domain. It is shown that TS waves are either amplified or attenuated depending on whether the PC free-face surface displacement and unsteady perturbation pressure at the wall are in-phase or out-of-phase, respectively. The perturbation pressure acts solely as the driver for the mechanical oscillation of the PC. The emerging hydrodynamic coupling between TS waves and the PC is found to be governed by a combination of the Orr mechanism and wall-normal velocity linear superposition near the wall. Finally, a metasurface comprised of an array of streamwise-distributed PCs is evaluated, resulting in an amplitude growth delay of 11.3% of the TS wavelength along the metasurface extent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.