Abstract

In previous studies, 18-methoxycoronaridine, a novel iboga alkaloid congener, has been reported to decrease the self-administration of morphine, cocaine, ethanol and nicotine, and to attenuate naltrexone-precipitated signs of morphine withdrawal. In the present study, the nature of the interaction between 18-methoxycoronaridine and morphine was further investigated. Using in vivo microdialysis, 18-methoxycoronaridine pretreatment (40 mg/kg i.p., 19 h beforehand) was found to markedly inhibit morphine-induced (5 mg/kg, i.p.) dopamine release in the nucleus accumbens and striatum; 18-methoxycoronaridine also enhanced morphine-induced increases in extracellular levels of dopamine's metabolites. These effects, which were more prominent in the nucleus accumbens than in the striatum, suggest that 18-methoxycoronaridine selectively interferes with morphine-induced dopamine release, without altering morphine-induced stimulation of dopamine synthesis. In intravenous morphine self-administration experiments, the effects of acute 18-methoxycoronaridine treatment (40 mg/kg, p.o.) were assessed in rats responding for one of several different unit infusion dosages of morphine (0.01-0.16 mg/kg/infusion). 18-Methoxycoronaridine produced a downward shift in the entire morphine dose–response curve without any displacement to the left or right. These results suggest that 18-methoxycoronaridine reduced the reinforcing efficacy of morphine without altering its apparent potency. Together, the microdialysis and self-administration data suggest that 18-methoxycoronaridine profoundly alters mechanisms crucial to the development and maintenance of opioid addiction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.