Abstract

Alzheimer's disease (AD), a progressive severe neurodegenerative disorder, is currently incurable, despite intensive efforts worldwide. Herein, we demonstrate that catalytic oxygenation of amyloid-β peptides (Aβ) might be an effective approach to treat AD. Aβ1-42 was oxygenated under physiologically-relevant conditions (pH 7.4, 37 °C) using a riboflavin catalyst and visible light irradiation, with modifications at the Tyr(10) , His(13) , His(14) , and Met(35) residues. The oxygenated Aβ1-42 exhibited considerably lower aggregation potency and neurotoxicity compared with native Aβ. Photooxygenation of Aβ can be performed even in the presence of cells, by using a selective flavin catalyst attached to an Aβ-binding peptide; the Aβ cytotoxicity was attenuated in this case as well. Furthermore, oxygenated Aβ1-42 inhibited the aggregation and cytotoxicity of native Aβ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call