Abstract

Diabetic autonomic neuropathy is a common complication following prolonged diabetes. Alterations of cardiovascular reflexes contribute to the increased cardiovascular morbidity and mortality seen in diabetic patients. This study sought to better characterize these complications by investigating the afferent limb of the baroreceptor reflex in an experimental rat model of diabetes. Streptozotocin (STZ)-induced diabetic and euglycemic control rats were studied at 8- and 16-week time points after initiation of the experiment. Activation of the afferent limb of the baroreceptor reflex was assessed by measuring the numbers of c-Fos-immunoreactive (ir) neurons in the CNS site of termination of the baroreceptor afferent neurons, the nucleus of the solitary tract (NTS). Initial experiments established that baseline cardiovascular parameters and NTS expression of c-Fos-ir neurons were not different between diabetic and control rats at either time point. Phenylephrine (PE)-induced activation of baroreceptors resulted in a significant elevation in the numbers of c-Fos-ir neurons in the NTS of control rats. Although diabetic rats showed similar pressor responses to PE, the activation of c-Fos-ir neurons in the NTS of diabetic rats was significantly attenuated. At both 8 and 16 weeks, STZ-induced diabetic rats had significantly fewer c-Fos-ir neurons in the commissural NTS and in the caudal subpostremal NTS when compared to the non-diabetic control animals receiving PE. These data suggest that STZ-induced diabetes, for a period of 8 and 16 weeks, results in reduced activity in the afferent baroreceptor input to the NTS, and are consistent with diabetes-induced damage to baroreceptor afferent nerves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call