Abstract

The acoustic activity in beam-shaped specimens made of cement is studied, assuming that the beams are loaded in three-point bending under a step-wise loading scheme. Attention is focused to the attenuation of the acoustic activity during the constant-load stage of each specific loading step. The experimental data are analyzed in terms of the interevent time intervals between any two successive acoustic hits (using the F-function concept) and, further, in terms of the power of the acoustic hits (in terms of the recently introduced P-function). It is indicated that while the mechanical load is kept constant, the acoustic activity attenuates steadily, and during the early steps of this attenuation phase, the temporal evolution of both the F- and P-functions is excellently described by an exponential law. Moreover, it is proven that for both the F- and P-functions, the relaxation exponents decrease monotonically with increasing load. This decrease becomes quite abrupt for loads exceeding about 80% of the fracture load, providing an interesting and promising pre-failure indicator, i.e., a warning signal that the specimen is entering into the stage of impending macroscopic fracture. The specific conclusions are in very satisfactory agreement, both qualitatively and quantitatively, with similar ones drawn by considering the temporal evolution of the respective b-value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.